1 集成学习概述
核心思想:三个臭皮匠顶个诸葛亮
集成学习三步走
- 特征抽取
- 反复建模(弱学习器)
- 模型集成(强学习器)
1.1 模型集成的策略
1.1.1 平均法
最终的预测输出 = 若干个弱学习器的预测输出的平均
1.1.2 投票法
最终的预测输出 = 若干个弱学习器的预测输出的投票结果
- 常见的几种投票法
- 相对多数投票法:少数服从多数
- 绝
分类目录归档:分类回归算法
核心思想:三个臭皮匠顶个诸葛亮
集成学习三步走
- 特征抽取
- 反复建模(弱学习器)
- 模型集成(强学习器)
最终的预测输出 = 若干个弱学习器的预测输出的平均
最终的预测输出 = 若干个弱学习器的预测输出的投票结果
- 常见的几种投票法
- 相对多数投票法:少数服从多数
- 绝
决策树通过树结构存储判断流程和规则,实现复杂规则的有效记录
一般来说,树的非叶节点存储了判断逻辑,并通过树分支表达多个判断结果 通过自上而下的多层逻辑判断,最终在叶节点输出预测的分类结果
决策树示例:
ID3算法主要利用信息增益进行特征的选择,并通过递归方法构建特征