分类目录归档:MIT18.01单变量微积分

6.指数和对数的导数

1 指数(exponential)的导数Part1

$$\frac{d}{dx}a^x=\lim_{\Delta x\to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}=a^x\lim_{\Delta x\to 0}\frac{a^{\Delta x}-1}{\Delta x}=M(a)a^x$$

  • 其中$a$表示某一固定常数,$M(a)$表示某一固定函数值
  • 当$x=0$时,$M

Read more

5.隐函数微积分和逆函数求导

1 隐函数微积分

扩展$(x^n)'=nx^{n-1}$为$(x^a)'=ax^{n-1}$

  • 其中$a$表示有理数,可以用$\frac{m}{n}$表示
  • $m,n \in Z$,即$m$和$n$属于整数集

扩展公式的证明:

  • 转换$y=x^{\frac{m}{n}}$为$y^n=x^m$
  • 由此可得$\frac{d}{dx}y^n=\frac{d}{dx}x^m=mx^{m-1}$
  • 借助链式法则可得$\frac{d}{dy}y^n\frac{dy}{dx}=mx^{m-1}$
  • 化简可得$\frac{dy}{dx}=\frac{mx^{m-

Read more

4.链式法则及高阶导数

1 导数的乘法法则

$(uv)'=u'v+v'u$

乘法法则推导Part 1 $$\begin{align} \Delta(uv) & = u(x+\Delta x)v(x+\Delta x)-u(x)v(x) \ \\ & = [u(x+\Delta x)-u(x)]v(x+\Delta x)+u(x)[v(x+\Delta x)-v(x)] \ \\ & = \Delta u\times v(x+\Delta x)+u(x)\D

Read more

3.求导公式和三角函数

1 求导公式

  1. 特定函数求导,如$x^n$的导数为$nx^{n-1}$
  2. 通用公式,如${(u+v)}'={u}'+{v}'$
  3. 以上两种的混合使用

2 三角函数的导数

  • 在正式推导前,需要先推导出两个特殊情况下的极限变化率

第一种特殊情况: $$\lim_{x \to 0}\frac{sin(x)}{x}=1$$ 几何法证明:

附件/Pasted image 20210912173326.png

(图片引用说明:知乎@三少爷的贱男春)

  • 上图为一个标准单位圆,角度$\theta$对应弧长为$2\pi r=\theta$
  • 随着$\theta$的减少,极短曲线可看作直线,即$\theta=sin(\theta

Read more

2.极限和连续

1 变化率 rate of change

  • 注意:本课前半部分内容为第一节内容未讲完部分。第一节仅描述了导数的几何解释,而变化率则是导数的物理解释。

$$\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\frac{dy}{dx}$$

  • $\frac{\Delta y}{\Delta x}$表示的是一种平均值
  • $\frac{dy}{dx}$表示的是一种瞬时值

Read more

1.导数和变化率

1 何为导数 derivative

  • 几何解释 geometric interpretation
  • 物理解释 physical interpretation
  • 导数全方位的重要性 importance to all measurements

2 如何对已知的任意函数求导

  • 思考:如何对$e^{xarctan(x)}$求导

导数的几何解释

附件/Pasted image 20210912115729.png

  • 选择函数曲线上的点$P$,其坐标值为$(x_0,y_0)$
  • $x_0$沿着x轴(x-axis)移

Read more