1 jieba
支持四种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
- paddle模式,利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,
pip install paddlepaddle-tiny==1.6.1
。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade
。PaddlePaddle官网 - 支持繁体分词
- 支持自定义词典
2 HanNLP
面向生产环境的多语种自然语言处理工具包,基于PyTorch和TensorFlow 2.x双引擎,目标是普及落地最前沿的NLP技术。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。
借助世界上最大的多语种语料库,HanLP2.1支持包括简繁中英日俄法德在内的104种语言上的10种联合任务:分词(粗分、细分2个标准,强制、合并、校正3种词典模式)、词性标注(PKU、863、CTB、UD四套词性规范)、命名实体识别(PKU、MSRA、OntoNotes三套规范)、依存句法分析(SD、UD规范)、成分句法分析、语义依存分析(SemEval16、DM、PAS、PSD四套规范)、语义角色标注、词干提取、词法语法特征提取、抽象意义表示(AMR);以及<strong>指代消解</strong>、<strong>语义文本相似度</strong>、<strong>文本风格转换</strong>。
量体裁衣,HanLP提供RESTful和native两种API,分别面向轻量级和海量级两种场景。无论何种API何种语言,HanLP接口在语义上保持一致,在代码上坚持开源。
3 pkuseg
多领域中文分词工具包。简单易用,支持细分领域分词,有效提升了分词准确度。
pkuseg具有如下几个特点:
- 多领域分词。不同于以往的通用中文分词工具,此工具包同时致力于为不同领域的数据提供个性化的预训练模型。根据待分词文本的领域特点,用户可以自由地选择不同的模型。 我们目前支持了新闻领域,网络领域,医药领域,旅游领域,以及混合领域的分词预训练模型。在使用中,如果用户明确待分词的领域,可加载对应的模型进行分词。如果用户无法确定具体领域,推荐使用在混合领域上训练的通用模型。各领域分词样例可参考 <strong>example.txt</strong>。
- 更高的分词准确率。相比于其他的分词工具包,当使用相同的训练数据和测试数据,pkuseg可以取得更高的分词准确率。
- 支持用户自训练模型。支持用户使用全新的标注数据进行训练。
- 支持词性标注。
工具对比
#待补充
疑难词
分词速度