本文对谷歌年度盘点系列博客进行总结(在原
发表评论
1133 views
gradio | streamit | dash | |
---|---|---|---|
主要使用场景 | 可交互 Demo简单 | 工作流、DashBoard | DashBoard、复杂演示应用 |
上手难度 | 简单 | 简单 | 中等 |
组件丰富度 | 低 | 高 | 高 |
综合扩展性 | 低 | 中 | 高 |
Jupyter Notebook 内支持 | 是 | 否 | 是 |
是否完全开源 | 是 | 是 | 部分企业级功能未开源 |
github st |
最常用的10个超参数(原生API,兼容Scikit-learn的API,常见取值范围):
num_boost_round
:训练期间所需要的基学习器数量,默认100;在应对较大数据集时,一般控制在5000~10000左右(影响训练时间的重要因素);一个常用技巧是先设定一个较高的数值,然后结合early-stopping来获得一个较优的模本文主要围绕作者科研十年的感悟和思考,进行总结和探索
本书框架如下:
附录
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,基于密度的、对噪声鲁棒的空间聚类方法)是一种基于密度的经典聚类算法