1 三角函数的微积分
三角函数恒等式:
$$secx=\frac{1}{cosx}$$ $$cscx=\frac{1}{sinx}$$ $$cotx=\frac{cosx}{sinx}$$ $$sec^2x=\frac{1}{cos^x}=1+tan^2x$$
三角函数的微积分:
$$tan'x=sec^2x$$ $$sec'x=secx\ tanx$$ $$\int tanx=-ln(cos)+C$$ $$\int secx=ln(secx+tanx)+C$$
证明:$\int secx=ln(secx+tanx)