发表评论
508 views
DOI:10.5281/ZENODO.1207631
作者:Dav
DOI:10.48550/ARXIV.2310.02207
作者:Wes Gurnee
循环神经网络(RNNs):具有隐状态、不同层参数共享的神经网络
常见的三种基础 RNNs :RNN、GRU、LSTM
隐变量模型:使用隐状态 $h_{t-1}$ 存储前 $t-1$ 步的序列信息 $$P(x_t|x_{t-1},...,x_1)\approx P(x_t|h_{t-1})$$ $$h_t=f(x_t,h_{t-1})$$ 循环神经网络(recurrent neural networks,RNNs) 是具有隐状态的神经网络
假设时刻 $t$ 的输入为 $X_t \in \mathbb{R}^{n\times d}$,对应的权重参数为 $W
卷积神经网络(CNN):引入了卷积操作的神经网络
严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation)
二维互相关运算示例:
池化(pool)层的优点:降低卷积层对位置的敏感性
常用池化层分两种:最大池化层和平均池化层,前者示例如下:
类似于卷积层,池化层也会有填充和步幅,使用大于 1 的步幅可以起到降维的作用
不同于卷积层,池化层在每个输入通道上是单独计算的,所以池化层的输出通道数等于输入通道数
膨胀(dilated)卷积,也称