概率图模型
概率图模型,在概率模型的基础上,使用基于图的方法来表示概率分布(概率密度/密度函数),是一种通用化的不确定性知识表示和处理方法。
在图模型中,随机变量构成了图中的节点,而随机变量之间的关系(比如相关、独立、不独立、条件独立、因果)则构成了图中节点之间的边
随机变量的常见关系度量指标:
对于随机变量之间的因果关系分析
分类目录归档:学习
概率图模型,在概率模型的基础上,使用基于图的方法来表示概率分布(概率密度/密度函数),是一种通用化的不确定性知识表示和处理方法。
在图模型中,随机变量构成了图中的节点,而随机变量之间的关系(比如相关、独立、不独立、条件独立、因果)则构成了图中节点之间的边
随机变量的常见关系度量指标:
对于随机变量之间的因果关系分析
维特比算法(Viterbi algorithm)是一种寻找最短路径的动态规划算法。可以用于寻找最有可能产生观测事件序列的维特比路径——隐含状态序列,适应于多步骤每步多选择模型的最优选择问题,比如HMM。
维特比算法是针对暴力枚举法的优化
假设有一个长度为$l$的序列,其中$l$对应总天数
其中第$i$天的隐含状态可能情况有$n$种,第$i+1$天的隐含状态可能情况有$m$种
第$i$天的最大概率为$P_i=argmax_k({P_{ik}},k=1,...,n)$,其中$P_{
AC 算法,即 Aho-Corasick 自动机算法,是两位创始人的名称凑出来的(国际惯例起名法了属于是,但是简称和强化学习里的 Actor-Critic 算法重名,需要注意区分~)
此算法的时间复杂度为O(n),与匹配字符串的数目无关,只跟被匹配字符串长度有关
特性:核心思想和[[1_study/algorithm/字符串类算法/单模式匹配算法 KMP]](建议先看懂这个)是一致的,都通过寻找字符串的内部规律,达到每次失配时的高效跳转,只不过AC算使用前缀
KMP,全称为Knuth-Morria-Pratt,是三位创始人的名称凑出来的
KMP 算法是一种字符串匹配算法,时间复杂度 :O(n+m)
特性:字符串头部和尾部会有重复的部分,利用这部分信息,减少匹配次数
理解字符串的前缀和后缀
- 把字符串切割成非空的两份,前面那份就是前缀,后面那份就是后缀
- 所有前缀的可能性组成了前缀集合,所有后缀的可能性组成了后缀集合,比如”Harry”的前缀集合是{”H”, ”Ha”, ”Har”, ”Harr”},而”Potter”的后缀集合是{”otter”,
轻量级Python文件性能查看器
安装:pip install tuna
用法1:运行性能分析
python -mcProfile -o program.prof yourfile.py
tuna program.prof
用法2:模块导入性能
python -X importtime yourfile.py 2> import.log
#简写方法
python3 -X importtime -c "import本文罗列了一些热门的自动机器学习项目
AutoGluon 更倾向于使用多模型的 ensemble,利用多层 stacking + k-fold bagging 来实现更好更稳定的模型效果。当然基本的超参优化也是具备的。
自带了一系列的特征工程自动化组件,例如各种缺失值的预处理,日期特征,类别特征,文本特征处理等。但这部分功能相对基础
针对部署时进行优化,比如训练子模型替代多模型;引入模型蒸馏
代码整
网格搜索(Grid Search)会遍历给定参数空间内的所有参数组合,并选择最优的一组,相对于暴力枚举法,有点浪费时间
随机选择(Randomized Search)参数空间内的参数组合,可能有的参数组合不会被选到,效率比网格搜索高
贝叶斯优化(Bayesian Optimization)是一种通用的黑盒优化
sqlite3是一种文件数据库,Python内置了sqlite3驱动:
import sqlite3
# 数据库连接
con = sqlite3.connect('mydata.sqlite')
# 执行sql-建表语句
query = "CREATE TABLE test (a VARCHAR(20), b VARCHAR(20), c REAL, d INTEGER);"
con.execute(query)
con.co