分类目录归档:学习

最小角回归

在统计学中,最小角回归(LARS)是一种将线性回归模型拟合到高维数据的算法

用 $T(\hat{\boldsymbol{\beta}})$ 表示 $\hat{\boldsymbol{\beta}}$ 的绝对值范数 $$T(\hat{\boldsymbol{\beta}})=\sum_{j=1}^m|\hat{\beta_j}|\tag{7}$$ 则Lasso即为下面的约束优化问题: $$\min S(\hat{\boldsymbol{\beta}}) \quad \text{s.t.} \quad T(\hat{\boldsymbol{\beta}}) \le t\tag{8}$$ Las

Read more

强类型与弱类型

1 定义

强类型语言是一种强制类型定义的语言,即一旦某一个变量被定义类型,如果不经强制转换,那么它永远就死该数据类型。而弱类型语言是一种弱类型定义的语言,某一个变量被定义类型,该变量可以根据环境变化自动进行转换,不需要经过现行强制转换。

2 语言分类

强类型语言包括:Java、.net、Python、C++等语言。其中Python是动态语言,是强类型定义语言,是类型安全的语言,Java是静态语言,是强类型定义语言,也是;类型安全的语言;

弱类型语言包括:VB,PHP,JavaScript等语言。其中VBScript是动态语言,是一种类型不安全的原

Read more

seaborn 快速入门

Read more

skleran数据集

datasets数据集

sklearn的数据集库datasets提供很多不同的

Read more

Python 读取xml文件

1 XML文件

XML 指的是可扩展标记语言(eXtensible Markup Language),和json类似也是用于存储和传输数据,还可以用作配置文件。类似于HTML超文本标记语言,但是HTML所有的标签都是预定义的,而xml的标签可以随便定义。

<!--注释-->
<book category="python">
    <title> xml test <\title>	
<\bo

Read more

基础神经元

一个典型的神经元

附件/Pasted image 20210902165153.png

  • Axon 轴突
  • Dendritic tress 树突
  • Axon hillock 轴突体

线性神经元

$$y = b+\sum_ix_iw_i$$ 附件/Pasted image 20210903141612.png

二进制阈值神经元

对线性加权运算的结果,进行阈值判定

$$z = b+\sum_ix_iw_i$$ $$\begin{equation} y = \left\{ \begin{array}{rl} 1 & \mbox{if } z \geq 0, \\ 0 &

Read more

word2vec 系列

1 word2vec概述

广义上指能将词语文本转化为向量的一类技术,也称词嵌入(word embedding)

狭义上指借助神经网络模型为基础构建词向量的过程,其中最经典的两类word2vec技术分别为skip-gram和CBOW

最终获取的词向量,可看作表示单词意义的向量,也可以看作是词的特征向量

2 word

Read more

集成算法

1 集成学习概述

核心思想:三个臭皮匠顶个诸葛亮

集成学习三步走

  1. 特征抽取
  2. 反复建模(弱学习器)
  3. 模型集成(强学习器)

1.1 模型集成的策略

1.1.1 平均法

最终的预测输出 = 若干个弱学习器的预测输出的平均

1.1.2 投票法

最终的预测输出 = 若干个弱学习器的预测输出的投票结果

  • 常见的几种投票法
  • 相对多数投票法:少数服从多数

Read more

树算法族

1 决策树

决策树通过树结构存储判断流程和规则,实现复杂规则的有效记录

一般来说,树的非叶节点存储了判断逻辑,并通过树分支表达多个判断结果 通过自上而下的多层逻辑判断,最终在叶节点输出预测的分类结果

决策树示例:

1.1 决策树ID3算法

ID3算法主要利用信息增益进行特征的选择,并通过递归方法构建特征

  • 从根节点开始,计算所有特征的信息增益
  • 选择信息增益最大的特征作为此节点的判断逻辑,并构建子节点
  • 对子节点递归地调用以上方法,直到最大信息增益过低或没有特征停止递归

Read more

贝叶斯算法

贝叶斯定理: $$P(B|A)=\frac{P(A,B)}{P(A)}=\frac{P(A|B)P(B)}{P(A)}$$

  • 其中 $P(B|A)$ 表示后验概率 $posterior$
  • $P(A,B)$ 表示联合概率,$P(A)$ 表示历史经验 $evidence$
  • $P(A|B)$ 表示似然估计值 $likelihood$,$P(B)$ 表示先验概率 $prior$

朴素贝叶斯

朴素贝叶斯(Naive Bayes classifier)以贝叶斯定理为基础的简单分类器,主要通过统计历史数据中各种事件的发生频率,并从中寻找统计上的相关性,以实现对事件的预测

Read more