分类目录归档:学习

K-means聚类

1 K-means算法概况

K均值算法(即,k-means clustering),是一种无监督聚类算法

K-means算法属于NP-hard问题,不过存在高效的启发式算法,能快速收敛到一个局部最优解

2 K-means算法细节

算法步骤

  1. 对于N个样本,随机选择其中K个,作为最初的质心
  2. 遍历所有样本,选择最新的质心进行归类,形成K个簇
  3. 根据每个簇的样本重新计算质心(比如求均值)
  4. 重复步骤2-3,直到每个簇质心基本不再变化或达到最大迭代次数

算法的收敛过程如下所示:

(图源来自https

Read more

概率论基础

1 有偏方差VS无偏方差

有偏样本方差:$Var=\frac{1}{n}\Sigma_{i=1}^n(X_i-X_{mean})^2$

无偏样本方差:$Var=\frac{1}{n-1}\Sigma_{i=1}^n(X_i-X_{mean})^2$

当数据量较少时,无偏样本方差更合理;当数据量较大时,二者不存在明显差异

Python相关方差计算

  • numpy包中默认计算方差是有偏的,无偏计算需要设定参数ddof=1
  • pandas包中默认计算方差是无偏的,有偏计算需要设定参数ddof=0

2 条件概率密度函数

定义随机变量$X$的概率

Read more

条件随机场 CRF

1 马尔可夫随机场

一个无向图,结点表示随机变量,边表示两个随机变量之间的概率依赖关系,每个随机变量都可以指定一种可能取值,当变量满足马尔可夫性(即变量的可能取值只与它的临近变量有关)时,这时的图就叫马尔可夫网络,也就是马尔可夫随机场。(非严谨定义)

以构建以词性标注为例,假设一个句子由10个单词组成的句子,每个单词的词性选择有10种,则马尔可夫随机场就限制了所有单词的词性只和它前后的单词有关系。

2 条件随机场

条件随机场

Read more

隐马尔可夫模型 HMM

1 马尔可夫模型

马尔可夫模型(The Hidden Markov Model),简称HMM,又称为可视马尔可夫模型,具备无记忆性的特点,即当前时刻的状态,只受前一时刻的影响

以典型的天气模型为例,设状态有三种:{ Sunny,Rainy,Cloudy }

由于每天的天气都不一定,所以对于天气的每天观察就构成了一个马尔可夫链

通过历史数据统计不同状态之间的转移概率,就可以得到马尔可夫模型:

2 隐马尔可夫模型

马尔可夫模型的状态是可知的,而隐马尔可夫模型的状态是不可知,但存在可知的

Read more

概率图基础

概率图模型

概率图模型,在概率模型的基础上,使用基于图的方法来表示概率分布(概率密度/密度函数),是一种通用化的不确定性知识表示和处理方法。

在图模型中,随机变量构成了图中的节点,而随机变量之间的关系(比如相关、独立、不独立、条件独立、因果)则构成了图中节点之间的边

随机变量的常见关系度量指标:

对于随机变量之间的因果关系分析

Read more

维特比算法Viterbi

1 维特比算法概述

维特比算法(Viterbi algorithm)是一种寻找最短路径的动态规划算法。可以用于寻找最有可能产生观测事件序列的维特比路径——隐含状态序列,适应于多步骤每步多选择模型的最优选择问题,比如HMM。

2 维特比算法核心

维特比算法是针对暴力枚举法的优化

假设有一个长度为$l$的序列,其中$l$对应总天数

其中第$i$天的隐含状态可能情况有$n$种,第$i+1$天的隐含状态可能情况有$m$种

第$i$天的最大概率为$P_i=argmax_k({P_{ik}},k=1,...,n)$,其中$P_{

Read more

多模式匹配算法 AC

1 AC 算法概况

AC 算法,即 Aho-Corasick 自动机算法,是两位创始人的名称凑出来的(国际惯例起名法了属于是,但是简称和强化学习里的 Actor-Critic 算法重名,需要注意区分~)

此算法的时间复杂度为O(n),与匹配字符串的数目无关,只跟被匹配字符串长度有关

特性:核心思想和[[1_study/algorithm/字符串类算法/单模式匹配算法 KMP]](建议先看懂这个)是一致的,都通过寻找字符串的内部规律,达到每次失配时的高效跳转,只不过AC算使用前缀

Read more

单模式匹配算法KMP

1 KMP 算法概况

KMP,全称为Knuth-Morria-Pratt,是三位创始人的名称凑出来的

KMP 算法是一种字符串匹配算法,时间复杂度 :O(n+m)

特性:字符串头部和尾部会有重复的部分,利用这部分信息,减少匹配次数

理解字符串的前缀和后缀

  • 把字符串切割成非空的两份,前面那份就是前缀,后面那份就是后缀
  • 所有前缀的可能性组成了前缀集合,所有后缀的可能性组成了后缀集合,比如”Harry”的前缀集合是{”H”, ”Ha”, ”Har”, ”Harr”},而”Potter”的后缀集合是{”otter”,

Read more

Python 优质模块汇总

Read more

模块导入耗时分析

1 分析工具tuna(疑似远程环境不可用)

轻量级Python文件性能查看器

项目地址

安装:pip install tuna

用法1:运行性能分析

python -mcProfile -o program.prof yourfile.py

tuna program.prof

用法2:模块导入性能

python -X importtime yourfile.py 2> import.log

#简写方法

python3 -X importtime -c "import

Read more