分类目录归档:学习

AutoML 项目

本文罗列了一些热门的自动机器学习项目

1 AutoGluon

  • AutoGluon 更倾向于使用多模型的 ensemble,利用多层 stacking + k-fold bagging 来实现更好更稳定的模型效果。当然基本的超参优化也是具备的。

  • 自带了一系列的特征工程自动化组件,例如各种缺失值的预处理,日期特征,类别特征,文本特征处理等。但这部分功能相对基础

  • 针对部署时进行优化,比如训练子模型替代多模型;引入模型蒸馏

  • 代码整

Read more

自动调参

1 网格搜索

网格搜索(Grid Search)会遍历给定参数空间内的所有参数组合,并选择最优的一组,相对于暴力枚举法,有点浪费时间

代码实现参考

2 随机搜索

随机选择(Randomized Search)参数空间内的参数组合,可能有的参数组合不会被选到,效率比网格搜索高

代码实现参考

3 贝叶斯优化

贝叶斯优化(Bayesian Optimization)是一种通用的黑盒优化

Read more

Python 操作数据库工具总结

1 Python连接sqlite3

sqlite3是一种文件数据库,Python内置了sqlite3驱动:

import sqlite3

# 数据库连接
con = sqlite3.connect('mydata.sqlite')
# 执行sql-建表语句
query = "CREATE TABLE test (a VARCHAR(20), b VARCHAR(20), c REAL,        d INTEGER);"
con.execute(query)
con.co

Read more

人体部位组成

1 骨骼

1.1 脊柱

脊柱是一个复杂的结构,由多个椎骨(vertebrae)组成,它连接了头部和身体的下半部分,不仅提供了支撑和稳定性,还保护了脊髓。以下是脊柱的主要构成:

  • 椎骨(Vertebrae):脊柱由多个椎骨组成,它们堆叠在一起形成一个弯曲的柱状结构。椎骨之间通过弹性的软骨盘连接,允许脊柱进行运动并吸收冲击。脊柱是由26块椎骨(颈椎7块,胸椎12块,腰椎5块,1块骶骨和1块尾骨)组成
  • 椎骨分区:脊柱分为不同的部分,包括颈椎(cervical)、胸椎(thoracic)、腰

Read more

常用医学用语

1 常见病症

多器官衰竭 MODS

急性呼吸窘迫综合征 ARDS

1_study/medicine/重要疾病/急性肾损伤 AKI

1_st

Read more

常用医学指标

Read more

信息论基础

1 信息

信息是不确定性的减少或消除——香农

对于随机变量$X$来说,其取值可能为${x_0,x_1,...,x_n}$

假设变量$X$对应的概率分布为$p$,则$X=x_0$的信息量为 $$I(x_0)=-log(p(x_0))$$

2 熵

熵(entropy)度量了事物的不确定性

不确定越高的事物,它的熵就越大。

随机变量X的熵可以表示如下:

$$H(X)=-\Sigma_{i=1}^np_ilog(p_i)$$

  • 其中$n$表示$X$的所有

Read more

蒙特卡洛法

1 蒙特卡洛法

蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

蒙特卡洛方法的名字来源于摩纳哥的一个城市蒙特卡洛,该城市以赌博业闻名,而蒙特卡洛方法正是以概率为基础的方法。与它对应的是确定性算法。

蒙特卡洛方法的原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬

Read more

模拟退火法

1 基本概念

模拟退火算法(Simulated Annealing,SA)的思想最早是由Metropolis等提出的。物理中固体物质的退火过程与一般的组合优化问题之间的相似性,SA是一种由物理退火过程启发的通用优化算法

模拟退火法的物理过程:

  • 加温过程:其目的是增强粒子的热运动,使其偏离平衡位置。当温度足够高时,固体将熔为液体,从而消除系统原先存在的非均匀状态
  • 等温过程:对于与周围环境交换热量而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行的,当自由能达到最小时,系统达到平衡状态
  • 冷却过程:使粒子热运动减弱,系

Read more

遗传算法

遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

遗传算法的关键要素:

  • 种群(population)代表问题可能潜在的解集的一个开始的
  • 一个种群由经过基因(gene)编码的定数目的个体(individua)组成

核心过程:

  1. 编码:实现从表现型到基因型的映射,同时构建初代种群
  2. 选择:在每一代,根据问题域中个体的适应度(fitness)选择个体
  3. 变异:借助于遗传学算子(genetic operators)进行组合交叉和变异,产生代表新解集的种群
  4. 演化:按照适者生存和优胜

Read more