1 指数(exponential)的导数Part1
$$\frac{d}{dx}a^x=\lim_{\Delta x\to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}=a^x\lim_{\Delta x\to 0}\frac{a^{\Delta x}-1}{\Delta x}=M(a)a^x$$
- 其中$a$表示某一固定常数,$M(a)$表示某一固定函数值
- 当$x=0$时,$M
$$\frac{d}{dx}a^x=\lim_{\Delta x\to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}=a^x\lim_{\Delta x\to 0}\frac{a^{\Delta x}-1}{\Delta x}=M(a)a^x$$
扩展$(x^n)'=nx^{n-1}$为$(x^a)'=ax^{n-1}$
扩展公式的证明:
- 转换$y=x^{\frac{m}{n}}$为$y^n=x^m$
- 由此可得$\frac{d}{dx}y^n=\frac{d}{dx}x^m=mx^{m-1}$
- 借助链式法则可得$\frac{d}{dy}y^n\frac{dy}{dx}=mx^{m-1}$
- 化简可得$\frac{dy}{dx}=\frac{mx^{m-
$$\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\frac{dy}{dx}$$
- $\frac{\Delta y}{\Delta x}$表示的是一种平均值
- $\frac{dy}{dx}$表示的是一种瞬时值
导数的几何解释
- 选择函数曲线上的点$P$,其坐标值为$(x_0,y_0)$
- $x_0$沿着x轴(x-axis)移
蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
蒙特卡洛方法的名字来源于摩纳哥的一个城市蒙特卡洛,该城市以赌博业闻名,而蒙特卡洛方法正是以概率为基础的方法。与它对应的是确定性算法。
蒙特卡洛方法的原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。