1 图嵌入表示
传统图机器学习 VS 图表示学习
- 给定输入图,传统图机器学习需要提取节点、链接和图级特征;然后学习将特征映射到/预测标签的模型(SVM、普通神经网络等),并应用于下游任务
- 图表示学习则不需要额外特征工程,而是给定输入图,自动学习独立于任务的特征(节点、链接和图级嵌入表示),然后用于算法的训练学习和下游任务
嵌入表示的好处:
- 节点间嵌入的相似性表明了它们在网络中的相似性
传统图机器学习 VS 图表示学习
嵌入表示的好处:
课程内容大纲:
背景要求:机器学习、算法和图论、概率论与数理统计、Python/PyTorch
其他推荐工具:
瑞士奶酪理论(英语:Swiss Cheese Model),又称乳酪理论或瑞士起司理论,是英国曼彻斯特大学教授詹姆斯·瑞森(James Reason)于 1990 年提出的关于意外发生的风险分析与控管的模型
主要是讲,瑞士起司在制造与发酵过程当中,很自然的会产生小孔洞。如果把许多片起司重叠在一起,正常情况下,每片起司的空洞位置不同,光线透不过。只有在很极端的情况下,空洞刚好连成一直线,才会让光线透过去。导致严重事故发生的从来都不是因为某个单独的原因,而是多个问题同时出现。
瑞士起司理论示意图:左方是危险(Hazards),穿过数个孔洞后导致损失(Losses)
上图的一片片乳酪,往往代表
DOI:10.5281/ZENODO.1207631
作者:Dav
DOI:10.48550/ARXIV.2310.02207
作者:Wes Gurnee